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Thoughts on periodicities of order 2k and 24.

Euclidean Clifford algebras
Notation:

R,C,H,O

real numbers, complex numbers, quaternions and octonions.

KL, KR, KA

the algebras of left-sided, right-sided, and both-sided actions of a division algebra K
on itself.

CL(p, q)

the Clifford algebra of a p,q-pseudo-orthogonal space with metric signature, p(+), q(-).

K(n)

the algebra of n× n matrices over the division algebra K.

2K(n)

the block diagonal 2n× 2n matrices over K(n) : (so 2n2-dimensional).

In particular, given this basis for R(2),

ε =

[
1 0
0 1

]
, α =

[
1 0
0 −1

]
, β =

[
0 1
1 0

]
, γ =

[
0 1
−1 0

]
,

we have this as a basis for 2R,

ε =

[
1 0
0 1

]
, α =

[
1 0
0 −1

]
.
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My introduction to both division algebras and Clifford algebras was [1]. The fol-
lowing list of Clifford algebra isomorphisms derives from that source:

k CL(0, k) CL(k, 0)
0 R
1 C 2R
2 H R(2)
3 2H C(2)
4 H(2)
5 C(4) 2H(2)
6 R(8) H(4)
7 2R(8) C(8)
8 R(16)

However, we can dispense with all matrix algebras by making use of split versions
of the division algebras. Bases for C, H and O are

C : {1, i};
H : {q0 = 1, q1, q2, q3};
O : {e0 := 1, e1, e2, e3, e4, e5, e6, e7}

(see [2] and [3] for multiplication tables and much much more). We now need a new
copy of the complex algebra, and we’ll denote its imaginary unit ι (so ι2 = −1, and ι
commutes with everything, but it is not the same as our original complex unit i). Then
bases for split versions of those division algebras (using the multiplication tables in [2]
and [3]) are

C̃ : {1, ιi};
H̃ : {q0 = 1, q1, ιq2, ιq3};
Õ : {e0 := 1, e1, e2, ιe3, e4, ιe5, ιe6, ιe7}

(although these are in fact real algebras, they are no longer division algebras).
We can dispense with matrix algebras making use of the following isomorphisms

and equivalencies:
C̃ ' 2R

H ' HL ' HR

H̃ ' H̃L ' H̃R ' R(2)

H̃2 ' H2 ' HA ' R(4)
OL = OR = OA ' R(8)

In this, and what follows, it is understood that Kn := K ⊗K ⊗ ... ⊗K, where there
are n distinct copies of K on the righthand side (see [2] and [3]).
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We can now write that Clifford algebra representation table without matrices:

k CL(0, k) CL(k, 0)
0 R

1 C C̃

2 H H̃

3 C̃⊗H H̃⊗C

4 H⊗ H̃

5 C⊗H⊗H H⊗ H̃⊗ C̃
6 OL H3

7 C̃⊗OL OL ⊗C

8 H4 ' H2
A ' OL ⊗ H̃

To better illustrate what’s going on here, I’ll rewrite the above a little more schemat-
ically, using some different isomorphisms:

CL(0, k) k CL(k, 0)

R 0 R

C R 1 R C̃

HL R 2 R H̃L

C̃ HL R 3 R H̃L C

H̃L HL R 4 R H̃L HL

C H̃L HL R 5 R H̃L HL C̃

HL H̃L HL R 6 R H̃L HL H̃L

C̃ HL H̃L HL R 7 R H̃L HL H̃L C

H2
A 8 H2

A

There are some striking periodicities in these two tables. Modulo 2 we see that
going from k = 2n to k = 2n + 1 we alternately add C or C̃, which depending on if
we are looking at the CL(0, k) column, or CL(k, 0). Modulo 4 we see that

CL(0, 4n) ' CL(4n, 0), n ≥ 0.

Modulo 8 is the big periodicity, related to what is known as Bott periodicity. In this
context we first see that at k = 8 there is a kind of algebraic collapse, or simplification,
in the representation. But also,

CL(0, k + 8) ' CL(0, k)⊗ CL(0, 8),
CL(k + 8, 0) ' CL(k, 0)⊗ CL(0, 8).

This kind of order 8 periodicity applies as well to CL(p, q), with neither p nor q equal
to 0, but I’m not interested in that here.
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Let’s take a look at the second of the tables above and expand it all the way to
k = 24:

CL(0, k) k CL(k, 0)

R 0 R

C R 1 R C̃

HL R 2 R H̃L

C̃ HL R 3 R H̃L C

H̃L HL R 4 R H̃L HL

C H̃L HL R 5 R H̃L HL C̃

HL H̃L HL R 6 R H̃L HL H̃L

C̃ HL H̃L HL R 7 R H̃L HL H̃L C

H2
A 8 H2

A

C H2
A 9 H2

A C̃

HL H2
A 10 H2

A H̃L

C̃ HL H2
A 11 H2

A H̃L C

H̃L HL H2
A 12 H2

A H̃L HL

C H̃L HL H2
A 13 H2

A H̃L HL C̃

HL H̃L HL H2
A 14 H2

A H̃L HL H̃L

C̃ HL H̃L HL H2
A 15 H2

A H̃L HL H̃L C

H4
A 16 H4

A

C H4
A 17 H4

A C̃

HL H4
A 18 H4

A H̃L

C̃ HL H4
A 19 H4

A H̃L C

H̃L HL H4
A 20 H4

A H̃L HL

C H̃L HL H4
A 21 H4

A H̃L HL C̃

HL H̃L HL H4
A 22 H4

A H̃L HL H̃L

C̃ HL H̃L HL H4
A 23 H4

A H̃L HL H̃L C

O4
L 24 O4

L

This table makes the order 8 periodicity very pronounced. At every multiple of 8
there is a kind of algebraic collapse/simplification, after which we start adding things
in the same way as we did previously. Keep in mind that few of these representations
are unique. For example, at k = 16,

H4
A ' H8

L ' HA ⊗O2
L.

So the octonion algebra could have been introduced before k = 24.
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The question is: is this order 24 algebraic collapse to a product of just octonions
(left actions) meaningful? Well, ... Let’s take a look at a 1-vector basis for the Clifford
algebra CL(24, 0) represented by O4

L. We need four copies of O, and we’ll denote
their bases by

mea, a = 0, ..., 7, m = 1, 2, 3, 4.

This is the CL(24, 0) 1-vector basis I came up with (p = 1, ..., 6):

1eLp
2eL7

3eL0
4eL0

1eL0
2eLp

3eL7
4eL0

1eL7
2eL0

3eLp
4eL0

1eL7
2eL7

3eL7
4eLp

This gives us 24 anti-commuting elements of O4
L (6 for each row). The product of all

24 is
±1eL7

2eL7
3eL7

4eL7.

Interestingly, if we replace O by H (that is, H4
L), and build a similar basis for a

Clifford using quaternions instead of octonions (r = 1, 2), we get

1qLr
2qL3

3qL0
4qL0

1qL0
2qLr

3qL3
4qL0

1qL3
2qL0

3qLr
4qL0

1qL3
2qL3

3qL3
4qLr

which is a basis for CL(8, 0). So the octonions are associated with CL(24, 0), and the
quaternions with CL(8, 0), at least within this context.

[Note added 2014.03.12]
24 is the smallest dimension k for which

CL(k, 0) ' CL(0, k),

and both can be represented purely in terms of OL (O4
L). The first dimension in which

any Clifford algebra can feature the full OL in its representation is n = 6. And the
first dimension in which all CL(p, q) can exploit OL as part of their representations is
p+ q = 8.

24 = LCM(6, 8).

Half the Story
Clifford algebras are part of a broader context which includes its spinor space. When
exploited in theoretical physics Clifford algebras are generally represented as real or
complex matrices. In the former case the spinor space would usually be a column
matrix of real numbers, and in the latter case a column of complex numbers. And
there, at least as far as the mathematics is concerned, the matter would rest.
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But Clifford algebras can also be represented using the division algebras H and O
[1] [2] [3], and frequently in these cases there is more to the mathematics than just a
matrix algebra acting on a simple spinor space, and the reason for this is that the spinor
spaces are no longer so simple.

We see this in the simplest case of CL(0, 2) represented over HL, where a 1-vector
basis for this Clifford algebra could be {qL1, qL2}, with a 2-vector basis consisting of
just qL3, which generates the Lie group U(1) ' SO(2).

In this case, however, because multiplication of H from the right commutes with
all multiplication from the left, we have an entire copy of quaternion algebra action,
represented by HR, which is internal to the Clifford algebra action, represented by HL.
In [2] and [3] this gives rise in theory building to an SU(2) identified with isospin.

As another example, and one quite distinct from that quaternion case, we begin by
defining

S := C⊗O.

Then the Clifford algebra CL(7, 0) can be represented by SL, which is also isomorphic
to the 27 = 128-dimensional complex matrix algebra, C(8). An obvious 1-vector basis
consists of the 7 elements ieLa, a = 1, ..., 7. In this case the spinor space is the 16-
dimensional algebra S. In the C(8) case the spinor space is also 16-dimensional (over
R) consisting of 8×1 complex column matrices. But there is a huge difference between
these two spinor spaces (see in particular [3]). In the complex case the components of
the spinor space are complex numbers, and C is a division algebra, so its identity can
not be resolved into a nontrivial collection of orthogonal idempotents. In the S case the
spinors components are elements of S, which does have a nontrivial resolution of its
identity. This is generally represented by the elements

ρ± :=
1

2
(1± ie7),

which satisfy
ρ±ρ± = ρ±,
ρ±ρ∓ = 0,
ρ+ + ρ− = 1.

As has been shown [3], with the aid of these projection operators the SO(7) that is
generated from the Lie algebra of CL(7, 0) 2-vectors naturally breaks down to U(1)×
SU(3), and the spinor space decomposes into four SU(3) multiplets:

ρ+Sρ+ : SU(3) singlet;
ρ+Sρ− : SU(3) triplet;
ρ−Sρ− : SU(3) anti-singlet;
ρ−Sρ+ : SU(3) anti-triplet.

Ok, the point is, although much the same thing could be done representing things with
complex matrices, and giving the S1 × S7 subspace of the spinor space an algebraic
structure, the use of S makes this inherent algebraic structure in the spinor space con-
siderably more obvious.
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So, What About 24
In this case we’ll use O4

L to represent CL(24, 0), and our spinor space is then

L := O⊗O⊗O⊗O.

To make things potentially a little easier to read, we’ll let

ea, fa, ha, ga, a = 0, 1, ..., 7,

be the bases for the 4 respective copies of O. Then the basis for our chosen collection
of 24 basis 1-vectors for CL(24, 0) is (indices p and q will be understood to run from 1
to 6)

eLpfL7gL0hL0,
eL0fLpgL7hL0,
eL7fL0gLphL0,
eL7fL7gL7hLp.

The set of resulting 2-vectors is (a basis for the Lie group so(24))

eLpqfL0gL0hL0, so(6),
eL0fLpqgL0hL0, so(6),
eL0fL0gLpqhL0, so(6),
eL0fL0gL0hLpq, so(6),
eLpfLq7gL7hL0, 36− d,
eL7fLpgLq7hL0, 36− d,
eLq7fL7gLphL0, 36− d,
eLq7fL0gL7hLp, 36− d,
eL7fLq7gL0hLp, 36− d,
eL0fL7gLq7hLp, 36− d.

The total dimensionality is 4 × 15 + 6 × 36 = 276 = 1
224 × (24 − 1), which is the

dimensionality of so(24).
Finally we need a resolution of the identity of O⊗O⊗O⊗O, which I choose to

build from:
η± := 1

2 (1± e7h7),
µ± := 1

2 (1± f7h7),
ν± := 1

2 (1± g7h7).

Then the resolution consists of the 8 orthogonal idempotents

ρ±±± := η±µ±ν±,

where the signs are understood to be independent.
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Decomposition of the Spinor Space
A point made repeatedly in my work, and perhaps most cogently in [3], is that when a
Clifford algebra’s spinor space is composed of a column of tensored division algebras,
then there is likely to be a resolution of the identity of that tensored algebra, and this can
be used to decompose the pseudo-orthogonal Lie algebra of Clifford algebra bivectors
into subalgebras, and decompose the spinor space itself into bits that are multiplets of
the Lie algebra decomposition. For example, in [3] it was shown in some detail how
the spinor space S := C⊗O has a resolution of its identity that decomposed the so(7)
Lie algebra of bivectors in SL down to u(1)× su(3), and the spinor space S itself into
the direct sum of an su(3) singlet, antisinglet, triplet, and anti triplet.

The spinor space L is 212-dimensional. With respect to our resolution of its identity,
it can be decomposed into the following 8× 8 = 26 = 64 subsets,

ρ±±±Lρ±±±,

where the 6 signs are independent. These can be collected into 4 groups: 8 for which
the three signs on the left match the three signs on the right; 8× 3 = 24 for which one
of the signs on the right differs from the corresponding sign on the left; 8× 3 = 24 for
which two of the signs on the right differ from the corresponding signs on the left; and
8 for which all the signs on the right differ from the 3 corresponding signs on the left
(for a total of 8 + 24 + 24 + 8 = 64).

2012.04.02
I’m going to end this for the time being. Just to summarize: the associated so(24)

reduces with respect to the chosen resolution of the identity to su(3)× su(3)× su(3)
(with probably some u(1)s thrown in), and the spinor space breaks into a bunch of mul-
tiplets that are of the form singlet-singlet-singlet, triplet-singlet-singlet, triplet-triplet-
singlet, or triplet-triplet-triplet, where it is understood that in the middle two instances
we can permute the positions of the multiplet types, and in all cases, any of the multi-
plets could be replaced with the corresponding anti-multiplet. My reason for stopping
this here is an inability to convince myself that the end result is interesting enough to
warrant the effort of slogging through the mathematics. It might be, but I don’t see it
yet. However, I remain convinced that there are the seeds of a periodicity of order 24
in this mathematics.

2012.04.04
Well, it might be more complicated than that. Why aren’t there 4 su(3)s? Some

sharing or absorption of algebras and/or multiplets is going on. Still, ...

Motivation
Topologically Bott periodicity has to do with homotopy groups and the sequences of
classical Lie groups, orthogonal, unitary and symplectic. In this context the primary
kinds of periodicities that arise are of order 2, 4 and 8.

In the theory of laminated lattices there are also kinds of periodicities of order 2,
4, 8 and 24. It was this that inspired this look at Clifford algebra periodicity, and in
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particular that O4
L ' CL(24, 0) ' CL(0, 24).

The question naturally arises (at least in my cranium): is there a topological peri-
odicity of order 24?
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